MiniBooNE

Michel Sorel (Columbia University)

FNAL Users' Meeting, June 2003

- Physics
- Overview of the Experiment
- First look at the data
- Understanding the data

MiniBooNE Timeline and Physics Potential

- •Beamline and detector completed
 - •MiniBooNE is SN-live
 - •First light from beam neutrinos
 - •Measure $\nu_{\mu} \rightarrow \nu_{\mu}$
 - Measure $\sigma(\nu_{\mu})$ ratios
 - •Measure strange spin of the nucleon
 - •Results on exotic searches
 - •Measure absolute $\sigma(\nu_{\mu})$
 - •Measure $\nu_{\mu} \rightarrow \nu_{e}$
 - •More $\nu/\bar{\nu}$ running?
 - •Build 2nd detector (BooNE)?

The MiniBooNE Collaboration

- ▶ Y. Liu, I. Stancu, University of Alabama
- ▶ S. Koutsoliotas, Bucknell University
- ▶ C. Green, University of California, Riverside
- E. Hawker, R. A. Johnson, J. L. Raaf, University of Cincinnati
- ▶ T. Hart, E. D. Zimmerman, University of Colorado
- L. Bugel, J. M. Conrad, J. Formaggio, J. M. Link, J. Monroe, M. H. Shaevitz, M. Sorel, G. P. Zeller, **Columbia University**
- D. Smith, Embry Riddle Aeronautical University
- L. Bartoszek, C. Bhat, S. J. Brice, B. C. Brown, D. A. Finley, B. T. Fleming, R. Ford, F. G. Garcia, P. Kasper, T. Kobilarcik. I. Kourbanis, A. Malensek, W. Marsh, P. Martin, F. Mills, C. Moore, P. Nienaber, E. Prebys, A. D. Russell, P. Spentzouris, R. Stefanski, T. Williams, Fermi National Accelerator Laboratory
- D. C. Cox, J. A. Green, H.-O. Meyer, R. Tayloe, Indiana University
- ▶ G. T. Garvey, W. C. Louis, G. McGregor, S. McKenney, G. B. Mills, E. Quealy, V. Sandberg, B. Sapp, R. Schirato, R. Van de Water, D. H. White, Los Alamos National Laboratory
- ▶ R. Imlay, W. Metcalf, M. Sung, M. O. Wascko, Louisiana State University
- J. Cao, Y. Liu, B. P. Roe, University of Michigan
- D. A. O. Bazarko, P. D. Meyers, R. Patterson, F. C. Shoemaker, H. Tanaka,

Princeton University

- $\bullet \sim 60 \text{ scientists}$
- 13 institutions

The LSND Result

Oscillation signal expectation

Backgrounds

- 4σ excess of $\bar{\nu}_e$ events in a $\bar{\nu}_\mu$ beam
- Evidence for $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ oscillations

• Two-neutrino oscillations:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$
$$\Delta m^2 = m_2^2 - m_1^2$$

• Oscillation probability:

$$P_{\bar{\nu}\mu\to\bar{\nu}e} = \sin^2 2\theta \sin^2(1.27\Delta m^2 L/E)$$

Beyond minimal extensions of the SM?

- Three distinct neutrino oscillation signals, with: $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$
- LEP: only three, light, weakly-interacting neutrinos
- Possible ways out...
 - 1. One experiment is not due to oscillations
 - 2. Active-to-sterile neutrino oscillations
 - 3. CPT violation

Beyond minimal extensions of the SM?

- Three distinct neutrino oscillation signals, with: $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$
- LEP: only three, light, weakly-interacting neutrinos
- Possible ways out...
 - 1. One experiment is not due to oscillations
 - 2. Active-to-sterile neutrino oscillations
 - 3. CPT violation
- MiniBooNE can address all these possibilities:

- 1. Check LSND with different systematics, higher statistics, similar L/E
- 2. $\nu_{\mu} \rightarrow \nu_{e} \text{ versus } \nu_{\mu} \rightarrow \nu_{\mu}$
- 3. ν versus $\bar{\nu}$ running mode

Booster Neutrino Beam

Primary Beam: 8 Gev protons from Booster, $8 \cdot 10^{-6}$ duty factor

Secondary Beam: mesons are produced from protons striking Be target, focused by horn, and monitored by "Little Muon Counters" (LMC)

Neutrino Beam: neutrinos from meson decay in 50m pipe, pass through 450m of dirt (and oscillate?) to reach MiniBooNE detector

MiniBooNE Detector

Inner Region

- 12m in diameter sphere filled with 800t of pure mineral oil
- Light tight inner region with 1280 8" PMTs (10% coverage)
- 240 PMTs in outer region (>99% veto efficiency)
- Neutrino interactions in oil produce:
- 1. Prompt, ring-distributed Cherenkov light
- 2. Delayed, isotropic scintillation light

Particle ID

• $e/\mu/\pi^0$ separation:

• Nuclear recoil: use scintillation/Cherenkov fraction

Booster Performance

- Booster is working harder than ever!
- Steady increase of rate of delivered protons
- Currently factor of 2-3 below designed intensity. Designed intensity can be reached with planned Booster upgrades
- THANK YOU BEAMS DIVISION!
- Booster effort is already paying off...

Booster Performance

- Booster is working harder than ever!
- Steady increase of rate of delivered protons
- Currently factor of 2-3 below designed intensity. Designed intensity can be reached with planned Booster upgrades
- THANK YOU BEAMS DIVISION!
- Booster effort is already paying off...

- Currently at 10% of 10²¹ protons on target
- 100,000 ν_{μ} event candidates collected so far

Beam Event Timing

- Beam comes in spills at ~ 3 Hz (we hope to bring this to 5Hz)
- Each spill: 82 bunches separated by 19ns $\Rightarrow 1.6\mu s$ spill
- Trigger on signal from Booster; readout for $19.2 \ \mu s$
- No high level analysis needed to see neutrino events over background!
- A few very simple cuts are sufficient to reduce the beam unrelated background to $< 10^{-3}$
- We can even tell which RF bucket a neutrino comes from

Data Reconstruction

- Select events with no particle ID requirements:
 - 1. In time with beam
 - 2. Center of event track within a 5m radius
 - 3. Contained event (low veto activity)
 - 4. Visible energy greater than endpoint for electron from μ DAR

Data Reconstruction

- Select events with no particle ID requirements:
 - 1. In time with beam
 - 2. Center of event track within a 5m radius
 - 3. Contained event (low veto activity)
 - 4. Visible energy greater than endpoint for electron from μ DAR

Data Reconstruction

- Select events with no particle ID requirements:
 - 1. In time with beam
 - 2. Center of event track within a 5m radius
 - 3. Contained event (low veto activity)
 - 4. Visible energy greater than endpoint for electron from μ DAR

- Reconstruction works well
- In the process of assigning uncertainties to MC expectations
- Data/MC comparisons in the fall, with first physics results

Understanding the neutrino fluxes

- Most neutrinos from: $\pi^+ \to \mu^+ \nu_\mu$
- For $\nu_{\mu} \rightarrow \nu_{e}$ search, important background is intrinsic ν_{e} background in the beam:

$$K \to \pi e \nu_e, \qquad \pi^+ \to \mu^+ \nu_\mu \\ \hookrightarrow \bar{\nu}_\mu e^+ \nu_e$$

- Flux uncertainty dominated by uncertainty on π , K production in p-Be interactions
- Constrain neutrino flux predictions with existing π production data, BNL E910, and CERN HARP

- Internal cross-checks:
 - 1. ν_e from K^+ decays from high p_t muons in LMC (to be installed this summer)
 - 2. ν_e from μ^+ decays ν_μ data and variable-length decay region

Understanding the neutrino cross-sections

- At \sim 1GeV, dominant processes are neutrino-nucleon quasi-elastic scattering and resonant π production
- Low energy regime and nuclear effects complicate things
- Example: final state interactions impact kinematics/rates and observed final states

- MiniBooNE uses and develops the NUANCE ν cross-section generator \Rightarrow world-wide collaboration within the neutrino physics community
- MiniBooNE will measure a variety of neutrino cross-sections
- Useful for other experiments as well (e.g. Super-K, K2K, MINOS)

Understanding the detector

- Optical properties of the detector:
 - Dedicated off-situ measurements for measuring light production
 - Laser flask system measures light propagation and absorption in the detector
- Single PMT response:
 - Laser flask system measures the PMT charge and time response
- Track reconstruction:
 - Muon tracker plus scintillator cubes provide tracks with known direction, pathlength, vertex
- Energy scale and resolution:
 - Electron sample with known energy distribution from cosmic muons stopping in the detector

Timing distribution for laser events

Understanding the reconstruction, particle ID, event selection

- Build on the experience of previous Cherenkov detectors
- Extra handle of scintillation light
- Background to $\nu_{\mu} \rightarrow \nu_{e}$ search: muons or π^{0} 's misidentified as electrons
- Goal: electron events selection with rejection at the level of 10^3 for muons, 10^2 for π^0 's

• Invariant mass from relatively pure π^0 data sample is as expected:

Summary

- Many accomplishments in first nine months of data taking
- Proton rate delivered by Booster has dramatically improved over time
- Further Booster upgrades are in the works to reach intended rate
- Detector works beautifully!
- Collected 100,000 neutrino event candidates so far
- Next step is to present in the fall:
 - 1. first physics results on ν_{μ} disappearance and cross-sections
 - 2. updated $\nu_{\mu} \rightarrow \nu_{e}$ sensitivity
- Results on $\nu_{\mu} \rightarrow \nu_{e}$ search to be expected in early 2005

Extra-slides

- MiniBooNE trigger
- $\nu_{\mu} \rightarrow \nu_{e}$ analysis
- $\nu_{\mu} \rightarrow \nu_{\mu}$ analysis

MiniBooNE Trigger

• Typical trigger rates:

Trigger Type	Rate (Hz)
Beam	(currently) 3
Random	2
Laser flasks	1
Tank/Veto NHIT	1
Michel	1
Tracker/Cubes	1
Gamma/Beta	1
Supernova	11
Total	22

- Detector response understood down to a few MeV
- High veto efficiency

$\nu_{\mu} \rightarrow \nu_{e}$ analysis scheme

- Ongoing efforts on all fronts needed for the analysis:
 - Neutrino fluxes
 - Neutrino cross-sections
 - Detector calibration
 - Particle ID, event selection algorithms

u_{μ} disappearance analysis

- Compare predicted visible energy spectrum of ν_{μ} quasi-elastic events with data
 - search for a ν_{μ} disappearance signal
- Uncertainties in the flux and cross-section normalization are large
 - sensitivity comes from the energy distribution

(go back)